Written strategies for addition, subtraction, multiplication and division in line with the National Curriculum.

Addition

YEAR 3

Children are expected to be adding numbers with up to $\mathbf{3}$ digits by the end of Year 3.
STEP 1: Use of dienes and arrow cards to understand place value and partioning.
\square

STEP 2: Formal written method with no regrouping (exchange).

36	
+42	142
78	+334

Teaching Point: Children need to know that ones line up under ones, tens under tens etc.

STEP 3: Formal written method with regrouping of ones.
8

1
STEP 4: Formal written method with regrouping tens and ones.

276
$+\quad 80$
356
1
---:
+291
429

YEAR 4
Children are expected to be adding numbers with up to $\mathbf{4}$ digits by the end of Year 4.
STEP 1:Formal addition method with no regrouping (thousands, hundreds, tens and ones).

3569
+3420
6989

Teaching Point:
Start by adding the ones column first.
Children need to know that ones line up under ones, tens under tens hundreds under hundreds etc.

STEP 2 : Formal addition method with regrouping in hundreds, tens and ones.

$$
\begin{array}{r}
797 \\
+435 \\
\hline 1232 \\
\hline 11
\end{array}
$$

STEP 3 : Formal addition method with regrouping in hundreds, tens and ones causing a further thousand.

3797
$\begin{array}{r}3795 \\ +\quad 3435 \\ \hline\end{array}$
7232
111

YEAR 5

Children are expected to be adding numbers with more than $\mathbf{4}$ digits and to begin to add decimals by the end of Year 5 .

Formal column method with regrouping.

$$
\begin{array}{r}
6584 \\
+5848 \\
\hline 12432 \\
\hline 111 \\
34787 \\
+\quad 6723 \\
\hline 41510 \\
\hline
\end{array}
$$

Extend to decimals.
Use the same method to add two or more decimal fractions with up to 3 digits and the same number of decimal places. A Decimal Fraction is a fraction where the denominator (the bottom number) is a number such as 10, 100, 1000, etc

For example:
2.3 would look like this: 2 and $\frac{3}{10}$

Teaching Point: know that decimal points should line up under each other particularly when adding mixed amounts.

YEAR 6

Children are expected to extend the carrying method of addition with any number of digits by the end of Year 6.

Formal column method with regrouping.

6432

4681
786
$+\quad 42$
11941
1121

Extend to decimals.

Use the same method to add two or more decimal fractions with up to 4 digits and either one or two decimal places.

Teaching Point: know that decimal points should line up under each other particularly when adding mixed amounts.
$401.2+26.85+0.71=$

$$
401.2
$$

$$
26.85
$$

$+\quad 0.71$
428.76

Subtraction

YEAR 3

Children are expected to be subtracting numbers with up to $\mathbf{3}$ digits by the end of Year 3.

STEP 1: Formal written method with no regrouping (exchange).
$345-124=221$

In subtraction, we start from the whole and take away the part we know to find the missing part.

STEP 2: Regrouping (exchange) tens into ones only.

$$
80-24=56
$$

We need to regroup one of the tens into ten ones.

Now we can take 4 ones away.

 There are 6 ones left.71
80
-24
56

Dienes are used to help children
understand the written method.
STEP 3: Regrouping (exchange) hundreds into tens only.
$825-241=584$
71
825

- 241

584

8 hundreds and 2 tens can be regrouped into 7 hundreds and 12 tens. I take the 4 tens from 12 tens. I have 8 tens left.

YEAR 4

Children are expected to be subtracting numbers with up to $\mathbf{4}$ digits by the end of Year 4.

Formal written method with regrouping of thousands(decomposition).

$$
\begin{array}{r}
21 \\
3347 \\
-1925 \\
\hline 1422 \\
\hline
\end{array}
$$

Teaching Point: children must always subtract from the ones column first.

YEAR 5
Children are expected to be subtracting numbers with more than 4 digits.

Column subtraction with exchanging.

$$
\begin{array}{r}
24591 \\
35607 \\
-7698 \\
\hline 27909 \\
\hline
\end{array}
$$

Extend to:

- Begin to find the difference between two decimal fractions with up to three digits and the same number of decimal places.
For example: 24.9-13.7=
24.9
-13.7
11.2

Teaching point: know that decimal points should line up under each other.

YEAR 6
Children are expected to extend the written method of subtraction with any number of digits by the end of Year 6.

Column subtraction with exchanging.

$$
\begin{aligned}
& 2459 \\
& \text { 3'5607 } \\
& \text { - } 7698 \\
& 27909
\end{aligned}
$$

Extend to:

- Subtracting two or more decimal fractions with up to three digits and either one or two decimal places.

For example: 56.91-24.1-11.71=

56.91

24.1

- 11.71
21.10

Teaching Point: know that decimal points should line up under each other, particularly when subtracting mixed amounts.

Multiplication

YEAR 3

Children are expected to be multiplying two-digit numbers by a one-digit number by the end of Year 3.

STEP 1: Multiplying two-digit numbers by ones using distributive law (no regrouping).

$$
12 \times 3=36
$$

$10 \times 3=30$
12

STEP 3: Introducing short multiplication with no regrouping.

$$
\begin{array}{r}
42 \\
\times \quad 3 \\
\hline 126 \\
\hline
\end{array}
$$

Teaching Point: to line up the digits correctly.

STEP 2: Multiplying two-digit numbers by ones using distributive law (with regrouping).

$$
42 \times 3=126
$$

Teaching Points: to regroup the number and then multiply each group by the number.
Add the products for the total.
STEP 4: Short multiplication with regrouping.

24

Dienes and regrouping are used to help children understand the written method.
Teaching Point: to line up the digits correctly.

YEAR 4

Children are expected to be multiplying two or three-digit numbers by a one-digit number by the end of Year 4.

STEP 1: Multiplying two and three-digit numbers by one-digit numbers using distributive law (with regrouping).
2
$\times 3=$

156
$40 \times 3=120$
52156
(12) $\times 3=36$

Teaching Points: to regroup the number and then multiply each group by the number.
Add the products for the total.

STEP 3: Short multiplication with regrouping in one or more columns.

$$
\begin{array}{r}
146 \\
\times \quad 5 \\
\hline 730 \\
\hline 23
\end{array}
$$

YEAR 5

Children are expected to be multiplying up to four-digit numbers by a one or two digit number by the end of Year 5 .

STEP 1: Short multiplication of a 3 or 4 digit number by a single digit.

	2	1	2		1	4	3		1	2		7
X			4	x			3	x				5
	8	4	8		${ }^{1} 4$	2	9		6	'3		5
No regroup (exchange)				One regroup (exchanges)				Multiple regroups				

STEP 2: Long multiplication of a 3 or 4 digit number by a 2 digit number.

STEP 3: Long multiplication of a 3 or 4 digit number by a 2 digit number.

STEP 2
$4 \quad 3 \quad 4$

STEP 3				
		4	3	4
x			1	2
		8	6	8
	4	3	4	0
	5	2	0	8

Teaching points:

- using 2 colours will prevent the children from making mistakes
- always start multiplying from the ones column.

YEAR 6

Children are expected to multiply multi-digit numbers up to four digits by a two-digit whole number by the end of Year 6 .

STEP 1: Long multiplication of a 3 or 4 digit number by a 2 digit number.

		1	0	7	4
x				2	2
		2	${ }^{1} 1$	5	8
	2	1	4	8	0
	2	3	6	2	8

Teaching points:

- Using 2 colours will prevent the children from making mistakes.
- Always start multiplying from the ones column.

STEP 2: Written method of multiplication involving numbers with up to 2 decimal places multiplied by a 1 -digit number.

| | | 3 | 4 | | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :--- |\quad| Teaching points: |
| :--- |
| Line up the digits and the decimal point. |

Division

YEAR 3

Children are expected to be dividing two digit numbers by a one-digit number with remainders by the end of Year 3 .
(Children need to recall their multiplication tables accurately).

STEP 1: Division by sharing.

$$
12 \div 3=4
$$

Pictorial representation

STEP 3: Sharing 2 and 3 digit numbers by ones with no regrouping.

Bar Model

STEP 2: Division by grouping.

Mrs Khindey has 24 colouring pencils. She bundles them into groups of 12 . How many bundles will she have?

We know the size of the group but not the number of groups. We are dividing by grouping.
$24 \div 12=2$
12 is the size of each group and 2 is the number of groups.

We can use the fact $2 \times 12=24$

There are 2 groups of 12 in 24

STEP 4: Introducing the long division method (sharing ones).

$$
13 \div 4=3 \text { remainder } 1
$$

STEP 5: Long division of tens and ones with no regrouping.

Teaching points:

- Children to use base facts to help them.
- Children will be reminded about place value-for example how many groups of 2 s are there in 80 or 8 tens.

STEP 5: Long division of tens and ones with regrouping.

YEAR 4

Children are expected to be dividing numbers with up to two or three digits by a one-digit number by the end of Year 4.

STEP 1: Long division with regrouping hundreds into tens.

$$
426 \div 3=142
$$

Teaching points:

- Children to use base facts to help them.
- Think- how many groups?
- Children will be reminded about place value for example, how many groups of 3 s are there in 4 hundred?

STEP 2: Long division with regrouping hundreds into tens and tens into ones.

YEAR 5
Children are expected to be dividing numbers up to four digits by a one digit number including remainders by the end of Year 5 .

STEP 1: Short division explained.

STEP 2: Interpreting a remainder as a fraction.

my remainder by 6 too.

$$
\begin{aligned}
& \text { I know that } \frac{3}{6} \text { is equivalent } \\
& \text { to } \frac{1}{2} \text { so } 75 \div 6=12 \frac{1}{2}
\end{aligned}
$$

STEP 3: Interpreting remainder as a decimal.

	1	$2 \cdot 5$
6	$7^{1} 5 \cdot{ }^{3} 0$	

The 3 ones can be regrouped to give 30 tenths.
There are 5 groups of 6 tenths.

We said that the remainder of 3 could be expressed as $\mathbf{3 / 6}$ or $\mathbf{1 / 2}$.
I know $\mathbf{1} / \mathbf{2}=0.5$ so $75 \div 6=12.5$.

YEAR 6

Children are expected to be dividing numbers up to four digits by a two- digit whole number including remainders by the end of Year 6 . Interpret remainders as whole number remainders, fractions, decimals or by rounding.

STEP 1: Long Division Explained $6776 \div 7=1$

Instead of carrying the 5 at the top, I am going to pull down the 6 to show the 56 ones which I have now.

From my jottings, I can see that $8 \times 7=56$. There are 8 groups of ones.

There are none leftover.

STEP 2: Expressing remainders as fractions.

I would use long division to show $1,446 \div 12=120$ remainder 6 .

I need to divide the remainder (6) by the divisor (12). 6 divided by 12 can be written as $\frac{6}{12}$ and that is equivalent to $\frac{1}{2}$.
So $1,446 \div 12=120 \frac{1}{2}$

STEP 3: Expressing remainders as decimals in long division.

